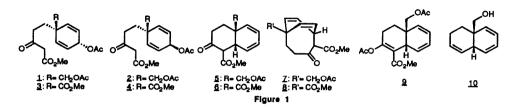
A CATALYTIC ASYMMETRIC SYNTHESIS OF cis-DECALIN DERIVATIVES VIA π -ALLYLPALLADIUM INTERMEDIATES

Toshiyasu Takemoto,^a Yuji Nishikimi,^b Mikiko Sodeoka,^b and Masakatsu Shibasaki^a*

^aFaculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan ^bFaculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan


Abstract: The usefully functionalized cis-decalin derivative 6 has been synthesized in up to 83% ee through the π -allylpalladium intermediate starting with the prochiral allylic acetate 3.

In the preceding paper we have shown that treatment of prochiral allylic acetates such as 1 with a catalytic amount of Pd(PPh₃)₄ and 1.2 equiv of NaH affords usefully functionalized *cis*-decalin derivatives such as 5 in high yields, which are efficiently converted to *trans*-decalin derivatives.¹ Herein, we report an application of the above-mentioned methodology to a catalytic asymmetric synthesis of *cis*-decalin derivatives.

First of all, a catalytic asymmetric synthesis of 5 utilizing 1 as a prochiral substrate was carefully investigated. Treatment of 1^1 with Pd(0), generated in situ from Pd(OAc)₂ (10 mol %) and BuLi (20 mol %), (R)-(S)-BPPFA² (10 mol %) and NaH (1.2 equiv) in CH₃CN at 25 °C for 10 min gave 5 of 47% ee (62%) accompanied with 7 (19%).³ Among several solvents examined, THF was found to afford the best result. That is, reaction of 1 in THF furnished 5 of 52% ee together with 7 (19%),³ and use of DMSO and DMF provided 5 of 31% and 44% ees, respectively. Other representative bidentate ligands such as (S, S)-chiraphos and (S)-BINAP gave the less satisfactory results, furnishing 5 of 37% (chiraphos) and 30% (BINAP) ees, respectively.⁴ Encouraged by these interesting results, a catalytic asymmetric synthesis utilizing 2 was also investigated. It was found that treatment of 2^1 with Pd(0), generated in situ from Pd(OAc)₂ (10 mol %) and BuLi (20 mol %), (R)-(S)-BPPFA (10 mol %) and NaH (1.2 equiv) in THF at 25 °C afforded 5 of 37% ee (21%) together with 7 (35%).⁵ The results are summarized in Table 1. The enantiomeric excess (ee) was unequivocally determined by the HPLC analysis (DAICEL CHIRALCEL OJ, hexane:2-propanol, 9:1) of the corresponding enol acetate 9 obtainable on treatment with acetic anhydride, triethylamine and 4dimethylaminopyridine in CH₂Cl₂ (97%), and assignment of the absolute configuration was achieved by converting 5 to the known decalin derivative $10.^6$

With the aim of synthesizing the *cis*-decalin derivative of higher ee, asymmetric cyclization of the prochiral allylic acetates 3 and 4 was next examined. After many experiments, it was found that treatment of 3 with Pd(0), generated in situ from Pd(OAc)₂ (10 mol %) and BuLi (20 mol %), (*R*)-(*S*)-BPPFA (10 mol %) and LiOAc (5 equiv) in THF at 20 °C for 2 hr gave the best result, providing 6 with 83% ee (34%) together with the 8-membered product 8 (51%).⁷ Likewise, the prochiral β -acetate 4 was transformed into the *cis*-decalin derivative 6 with 46% ee (20%) and 8 (26%)⁵ on treatment with Pd(0) (10 mol %), (*R*)-(*S*)-BPPFA (10 mol %) and K₂CO₃ (1 molar equiv) in THF at 40 °C for 33 hr. The results are summarized in Table 2. The *cis*-decalin derivative 6 was converted to 5 in 51% overall yield by treatment with NaH followed by chemoselective reduction with LiAlH4 and subsequent acetylation.

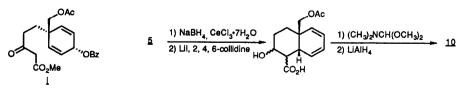
In conclusion, we have developed a catalytic asymmetric synthesis of usefully functionalized cis-decalin derivatives. Further work is in progress on the probable mechanism of asymmetric induction.

Table 1. Catalytic Asymmetric Synthesis of 5ª

ณา	substrate	ligand (10 mol %)	solvent	temp. (° C)	time (hr)	product <u>5</u> yield, % (ee, %)	product 7 yield, %
1	1	(<i>S, S</i>)-chiraphos	THF	0	3	32 (37)	41
2	1	(S)-BINAP	THF	25	2	47 (30)	48
3	1	(<i>R</i>)-(<i>S</i>)-BPPFA	THF	25	1	74 (52)	19
4	1	(<i>R</i>)-(<i>S</i>)-BPPFA	CH₃CN	25	0.2	62 (47)	19
5	2	(<i>R</i>)-(<i>S</i>)-BPPFA	THF	25	1	21 (37)	35

Pd(0), generated from Pd(OAc)₂ (10 mol %) and BuLi (20 mol %), and NaH (1.2 equiv) were utilized.

Table 2. Catalytic Asymmetric Synthesis of 6ª


run	substrate	base (equiv)	temp. (° C)	time (hr)	product <u>6</u> yield, % (ee, %)	product <u>8</u> yield, %
1	3	LiOAc (5)	25	2	34 (83)	51
2	3	Bu₄NOAc (5)	25	2	23 (79)	43
3 ⁶	4	LIOAc (5)	20	42	15 (71)	36
4	4	K ₂ CO ₃ (1)	40	33	20 (46)	26

Pd(0), generated from Pd(OAc)₂ (10 mol %) and BuLi (20 mol %), (R)-(S)-8PPFA (10 mol %) and THF solvent were utilized.

^b4 was recovered (18%).

References and Notes

- 1. The preceding paper in this issue.
- 2. T. Hayashi, T. Mise, M. Fukushima, M. Kagotani, N. Nagashima, Y. Hamada, A. Matsumoto, S. Kawakami, M. Konishi, K. Yamamoto, and M. Kumada, Bull. Chem. Soc. Jpn., 53, 1138 (1980). Use of LiOAc as a base afforded 5 of 45% ee (57%) together with 7 (34%).
- 3.
- 4. Use of other prochiral substrates gave the less satisfactory results. For example, i was transformed into 5 of 49% ee (25%) and 7 (6%) [(R)-(S)-BPPFA-NaH].
- 5. The reason why the slightly lower ee was obtained is not clear at present.
- 6. 7. Y. Sato, M. Sodeoka, and M. Shibasaki, J. Org. Chem., 54, 4738 (1989). Conversion to 10 is as follows.
- Use of NaH as a base gave the less satisfactory result. The reason is not clear at present.

